Altoida Celebrates Historic Day for Patients with Alzheimer’s Disease

Advancing Neuroscience Through Wearable Devices and Multimodal Data Analysis

December 16, 2021Neelem Sheikh

Between 2021 and 2028, the global wearable technology market is expected to grow at a compound annual growth rate of 13.8% to reach a whopping $118.16 billion. While the widespread adoption of wearable devices is largely driven by smartwatches, the range of wearable devices and other digital technologies is seemingly endless. Faster, more reliable, comfortable, and non-invasive wearable devices are producing data from biosensors at an unprecedented scale.

In healthcare, wearables are already making their mark, providing simple, yet accurate approaches to patient monitoring, screening, and diagnosis. They’re also being used as novel tools to assist with treatment, post-treatment, and ongoing management based on real-time physiological data. Wearable devices—including hearables, smartwatches, smart glasses, smart clothing, fitness trackers, and skin patches—and multimodal data analysis hold significant promise in both clinical and research environments. 

There is an opportunity for advancing neuroscience through wearable devices and multimodal data analysis by unlocking new links between the brain and other parameters of bodily function, providing a whole new paradigm for researching and understanding neurological disease signatures. This may enable a new, novel approach to diagnosing neurological diseases.

How Wearable Devices will Advance Neuroscience

Wearable devices are bringing increased awareness around health and wellness worldwide. Consumers continue to gravitate towards the concept of understanding and monitoring their health. Wearables are consumerizing healthcare—their ubiquity enables future multimodal consumer-level brain health technologies to be built on top of them.

When data from wearables, such as vitals, activity levels, and sleep, are paired with multimodal neurocognitive function data, we can gain a greater understanding of the connections between the brain and other subsystems within the body.

Wearables and body-worn sensors can produce data streams measuring aspects like body temperature, heart rate, blood oxygen levels, sweat gland activation, sleep-wake cycles, and respiration rate and can be paired with portable devices. Integrated sensors in portable devices can produce diverse multimodal data streams measuring aspects like speech and articulation, gait, eye movement, and fine motor coordination.

When paired with strong analytical tools, such as artificial intelligence, data from wearables, combined with multimodal data collection through portable devices, will change neuroscience as we know it. Feeding large data sets collected by digital neurocognitive function assessments and wearable devices from healthy individuals and those impacted by specific neurological diseases to artificial intelligence algorithms can determine links, patterns, and complex disease signatures associated with a breadth of neurological diseases. This method offers a highly accessible, cost-efficient, and non-invasive approach for assessing neurocognitive function and enhancing our understanding of neurological disease signatures.

Improving Neurological Disease Diagnostics

Currently, healthcare providers, researchers, and pharmaceutical companies alike rely on outdated cognitive and functional measurement tools that are highly variable during annual wellness visits. The lack of granularity and highly variable results of these assessments can lead to delayed diagnoses or misdiagnoses of neurological diseases like Alzheimer’s and Parkinson’s. To confirm neurological disease diagnoses, healthcare providers rely on expensive and invasive diagnostic tools, such as positron emission tomography (PET) scans and cerebrospinal fluid analysis. 

However, wearable devices, body-worn sensors, and portable devices can provide new, innovative solutions. If high-quality multimodal brain health data and wearable data are collected on a large scale over time, this can lead to the training of artificial intelligence on larger data sets, enabling the ability to identify patterns across the data and providing a non-invasive method for neurological disease diagnosis.

Altoida: A New Gold Standard in Neurology

At Altoida, we are paving the way to providing new, novel insights into neurological diseases through our innovative multimodal neurocognitive assessment. We are building the world’s first Precision Neurology platform and app-based medical device to provide the most sensitive, reliable, and accurate method for assessing neurocognitive function in the most accessible and cost-efficient manner possible.

By completing a series of augmented reality and motor activities designed to simulate complex ADLs on a smartphone or tablet, Altoida’s device provides granular, yet robust measurements of neurocognitive function across 13 neurocognitive domains:

  • Perceptual-motor coordination
  • Complex attention
  • Inhibition 
  • Flexibility
  • Visual perception
  • Planning
  • Prospective memory
  • Spatial memory
  • Cognitive processing speed
  • Eye movement
  • Speech and articulation 
  • Fine motor coordination
  • Gait

Our device measures and analyzes nearly 800 cognitive and functional digital biomarkers that have been proven to be clinically significant through over 20 years of scientific research. Through the collection of highly granular, multimodal data from integrated smartphone or tablet sensors, Altoida’s device produces comprehensive neurocognitive domain scores.

Combined with our innovative artificial intelligence, this method will pioneer fully digital predictive neurological disease diagnosis. After our recent Breakthrough Device designation by the FDA, Altoida’s technology will provide patients with a predictive score that will enable a highly accurate prediction of whether a patient aged 55 and older will or will not convert from Mild Cognitive Impairment to Alzheimer’s disease within 12 months.

To learn more about how Altoida’s Precision Neurology medical device will be used in conjunction with wearable devices to advance neuroscience, contact us today.

Contact Us

At Altoida, we use digital biomarkers to radically change the method of assessing brain health and cognitive diseases. After nearly two decades of research, we are developing a platform and device to measure and analyze cognitive biomarkers associated with cognitive impairment to evaluate perceptual and memory function.
Contact Us

Contact Us

80 M Street SE, Suite 100 Washington, DC 20003 USA 


Follow Us


By visiting our Website and/or using the Services in any manner, you acknowledge that you accept the practices and policies outlined in our Privacy Policy.

Our Disclaimer

@ Altoida 2022